Unable to open log file for update ../../bases/logs/portalorg/logerror.txtUnable to open log file for update ../../bases/logs/portalorg/logerror.txt Pesquisa | Portal Regional da BVS
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz. j. infect. dis ; 21(2): 125-132, Mar.-Apr. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-839198

RESUMO

Abstract Resistance to benznidazole in certain strains of Trypanosoma cruzi may be caused by the increased production of enzymes that act on the oxidative metabolism, such as mitochondrial tryparedoxin peroxidase which catalyses the reduction of peroxides. This work presents cytotoxicity assays performed with ferrocenyl diamine hydrochlorides in six different strains of T. cruzi epimastigote forms (Y, Bolivia, SI1, SI8, QMII, and SIGR3). The last four strains have been recently isolated from triatominae and mammalian host (domestic cat). The expression of mitochondrial tryparedoxin peroxidase was analyzed by the Western blotting technique using polyclonal antibody anti mitochondrial tryparedoxin peroxidase obtained from a rabbit immunized with the mitochondrial tryparedoxin peroxidase recombinant protein. All the tested ferrocenyl diamine hydrochlorides were more cytotoxic than benznidazole. The expression of the 25.5 kDa polypeptide of mitochondrial tryparedoxin peroxidase did not increase in strains that were more resistant to the ferrocenyl compounds (SI8 and SIGR3). In addition, a 58 kDa polypeptide was also recognized in all strains. Ferrocenyl diamine hydrochlorides showed trypanocidal activity and the expression of 25.5 kDa mitochondrial tryparedoxin peroxidase is not necessarily increased in some T. cruzi strains. Most likely, other mechanisms, in addition to the over expression of this antioxidative enzyme, should be involved in the escape of parasites from cytotoxic oxidant agents.


Assuntos
Animais , Gatos , Coelhos , Peroxidases/metabolismo , Compostos Ferrosos/farmacologia , Proteínas de Protozoários/metabolismo , Oxidantes/farmacologia , Diaminas/farmacologia , Mitocôndrias/enzimologia , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia , Western Blotting , Mitocôndrias/efeitos dos fármacos
2.
Braz J Infect Dis ; 21(2): 125-132, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27918890

RESUMO

Resistance to benznidazole in certain strains of Trypanosoma cruzi may be caused by the increased production of enzymes that act on the oxidative metabolism, such as mitochondrial tryparedoxin peroxidase which catalyses the reduction of peroxides. This work presents cytotoxicity assays performed with ferrocenyl diamine hydrochlorides in six different strains of T. cruzi epimastigote forms (Y, Bolivia, SI1, SI8, QMII, and SIGR3). The last four strains have been recently isolated from triatominae and mammalian host (domestic cat). The expression of mitochondrial tryparedoxin peroxidase was analyzed by the Western blotting technique using polyclonal antibody anti mitochondrial tryparedoxin peroxidase obtained from a rabbit immunized with the mitochondrial tryparedoxin peroxidase recombinant protein. All the tested ferrocenyl diamine hydrochlorides were more cytotoxic than benznidazole. The expression of the 25.5kDa polypeptide of mitochondrial tryparedoxin peroxidase did not increase in strains that were more resistant to the ferrocenyl compounds (SI8 and SIGR3). In addition, a 58kDa polypeptide was also recognized in all strains. Ferrocenyl diamine hydrochlorides showed trypanocidal activity and the expression of 25.5kDa mitochondrial tryparedoxin peroxidase is not necessarily increased in some T. cruzi strains. Most likely, other mechanisms, in addition to the over expression of this antioxidative enzyme, should be involved in the escape of parasites from cytotoxic oxidant agents.


Assuntos
Diaminas/farmacologia , Compostos Ferrosos/farmacologia , Mitocôndrias/enzimologia , Oxidantes/farmacologia , Peroxidases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Western Blotting , Gatos , Mitocôndrias/efeitos dos fármacos , Coelhos , Trypanosoma cruzi/efeitos dos fármacos
3.
J Biol Chem ; 290(49): 29178-88, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26378233

RESUMO

The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNA(Sec)), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNA(Sec) complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNA(Sec)-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNA(Sec)-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , RNA de Transferência Aminoácido-Específico/metabolismo , Selenocisteína/biossíntese , Sequência de Aminoácidos , Anisotropia , Sequência de Bases , Clonagem Molecular , Escherichia coli/enzimologia , Teste de Complementação Genética , Microscopia de Força Atômica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosfotransferases/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectroscopia de Infravermelho com Transformada de Fourier , Transferases/metabolismo
4.
Am J Trop Med Hyg ; 89(4): 766-774, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24002487

RESUMO

The phylogenetic relationships among species of Triatoma matogrossensis subcomplex (T. baratai, T. guazu, T. matogrossensis, T. sordida, T. vandae, and T. williami) was addressed by using fragments of cytochrome oxidase I (COI), 16S rDNA (16S), and cytochrome b (Cytb) through Bayesian and parsimony analyses. We did not recover a monophyletic T. matogrossensis subcomplex, and their members were found clustered in three strongly supported clades, as follows: i) T. jurbergi + T. matogrossensis + T. vandae + T. garciabesi + T. sordida; ii) with T. guasayana as the sister group of clade (i); and iii) T. williami + T. guazu, however not closely related to the clade formed by the previously mentioned species. The other two endemic species from Central-Western Brazil, T. baratai and T. costalimai, were not recovered with strong clade support as related to other members of this subcomplex. Results call for a further revision in the classification of the subcomplexes within the genus Triatoma.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Triatoma/classificação , Triatoma/genética , Animais , Brasil , Humanos , Especificidade da Espécie , Triatoma/anatomia & histologia
5.
Am J Trop Med Hyg ; 81(5): 858-64, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19861622

RESUMO

The phylogenetic position of Triatoma sherlocki within triatomines group was inferred by analyzing mtDNA fragments of Cyt B and 16S ribosomal RNA by using maximum parsimony and Bayesian analysis. Despite being differentiated from members of the T. brasiliensis complex on morphologic grounds, molecular phylogenetic analysis suggests T. sherlocki is a member of this complex; moreover, it was placed as a sister species of T. melanica. These suggestions were supported by robust credibility rates. Hence, we show evidence for the paraphyletic group of the "Triatoma brasiliensis complex," which should be composed of T. brasiliensis brasiliensis, T. brasiliensis macromelasoma, T. juazeirensis, T. melanica, and T. sherlocki.


Assuntos
Citocromos b/genética , Genes Mitocondriais/genética , Hemípteros/genética , Filogenia , RNA Ribossômico 16S/genética , Animais , Teorema de Bayes , Brasil , Demografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...